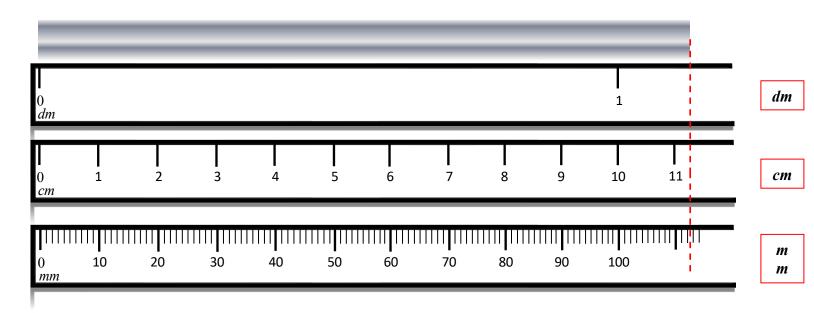


Física Experimental Revisão - 2022/01

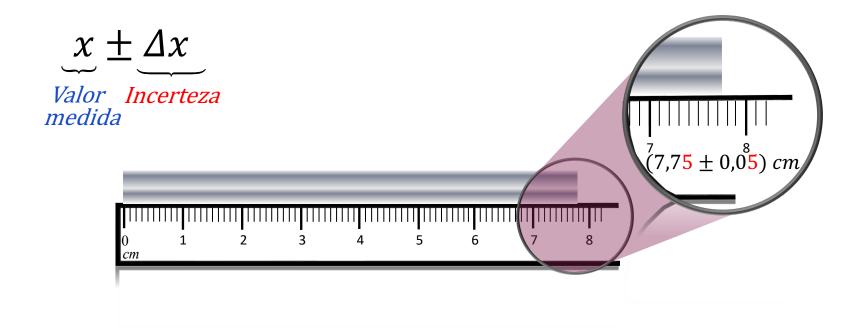
Universidade Federal do Espírito Santo Centro de Ciências Exatas - CCE Departamento de Física - DFIS


Roteiro

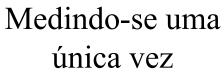
- O que são algarismos significativos?
- Definição de incerteza e como calcular incerteza absoluta em grandezas físicas
- Propagação de incerteza em grandezas físicas diretas e indiretas
- Análise dos resultados de alguns experimentos
- Dúvidas e perguntas!

Algarismos Significativos

Grandeza física direta: Medida e Precisão



Suposição... "chute": depende do olho do medidor.


Instrumento de Medida	Comprimento da barra	Quantidade de algarismos significativos obtidos
régua decimetrada	1, <u>1</u> dm	2
régua centimetrada	11, <u>3</u> cm	3
régua milimetrada	112, <mark>4</mark> mm	4

Poderá ser minimizado eliminandose o máximo fontes de erro. Avaliar quantitativamente as incertezas nas medições.

Incertezas em Medidas Diretas

$$x \pm \Delta x$$

Medindo-se *N* vezes a mesma grandeza

$$x_m = \sum_{i=1}^N \frac{x_i}{N}$$

$$\Delta x = \sum_{i=1}^{\infty} \frac{|x_m - x_i|}{N}$$

Distância entre os sensores H

$$t_1$$
 t_2
 t_3
 t_4
 t_5

 (cm)
 (s)
 (s)
 (s)
 (s)
 (s)

 S0-S1
 15,00
 \pm
 0,30
 2,527
 2,488
 2,660
 2,488
 2,494

$$t = t_m \pm \Delta t = (2.53 \pm 0.05)s$$

Incertezas em Medidas Indiretas

Geralmente é necessário usar valores medidos e afetados por incertezas para realizar cálculos a fim de se obter o valor de outras grandezas indiretas.

$$V = f(x \pm \Delta x, y \pm \Delta y, \dots)$$

Soma ou Subtração

$$A = a \pm \Delta a \\ B = b \pm \Delta b \\ C = c \pm \Delta c$$
 \Rightarrow $\left(\pm \Delta a, \pm \Delta b, \pm \Delta c, \dots = incertez \text{ absolutas} \right)$

$$S = A + B + C + \dots = s \pm \Delta s \Rightarrow \begin{cases} s = valor \ calculado \ da \ soma \\ \pm \Delta s = incerteza \ absoluta \ da \ soma \end{cases}$$

$$S' = A - B - C - \cdots = s' \pm \Delta s \Rightarrow \begin{cases} s' = valor calculado da substração \\ \pm \Delta s = incerteza absoluta da soma \end{cases}$$

Soma ou Subtração

Incertezas em Medidas Indiretas

Exemplo: Com uma régua milimetrada, mediram-se, pelo menos, três vezes os comprimentos de cada um dos dois tubos. Após, a determinação dos valores médios e respectivas incerteza para cada tamanho, os valores são:

$$L_1 = (1,000 \pm 0,0003) m$$
 $L_2 = (0,0123 \pm 0,00052) m$

- As representações de L_1 e L_2 estão corretas? Justifique!
- Se os dois comprimentos (L_1 e L_2) fossem somados, qual o valor da nova grandeza?

$$L = L_1 + L_2 = [(1,0000 + 0,0123) \pm (0,0003 + 0,0005)]m \implies L = (1,0123 \pm 0,0008)m$$

• Se os dois comprimentos (L_1 e L_2) fossem subtraídos, qual o valor da nova grandeza?

$$L' = L_1 - L_2 = [(1,0000 - 0,0123) \pm (0,0003 + 0,0005)]m \implies L' = (0,9877 \pm 0,0008)m$$

Multiplicação, divisão, radiciação e potenciação

$$F = K.A.B^{\alpha}.C^{\beta}$$

$$F = \bar{f} \pm \Delta f$$

$$\bar{k}.\bar{a}.\bar{b}^{\alpha}.\bar{c}^{\beta}$$
Critério mais desfavorável

$$\pm \Delta f = \pm \bar{f} \left[\left| \frac{\Delta k}{\bar{k}} \right| + \left| \frac{\Delta a}{\bar{a}} \right| + \left| \alpha \frac{\Delta b}{\bar{b}} \right| + \left| \beta \frac{\Delta c}{\bar{c}} \right| \right]$$

Multiplicação, divisão, radiciação e potenciação

$$F = K.A.B^{\alpha}.C^{\beta}$$

Exemplo: Calcule o volume de uma esfera cujo o raio vale: $R = r \pm \Delta r = (232,0 \pm 0,1) \, mm$. Neste caso podemos calcular seu volume utilizando uma calculadora com dez dígitos, sem nos preocuparmos com à incerteza que afeta o número π .

$$V = v \pm \Delta v = (5,231 \pm 0,007)x10^7 mm^3$$

No caso em que os dados forem usados como argumento de funções $(\sin x, \cos x, \log x, \ln x, \text{ etc.})$:

$$F = f \pm \Delta f = \frac{f_{sup} + f_{inf}}{2} \pm \frac{f_{sup} - f_{inf}}{2}$$

Exemplo: $cos(30,0 \pm 0,2)^{\circ}$

Experimento A7 – Momento de Inércia

Tabela 1 – Dados iniciais das massas, raios espessuras e densidades

Descrição do conjunto					
Massa Acoplada + suporte - m (g)	56,92	±	0,01		
Raio Tambor - r (cm)	1,86	±	0,03		
Raio do Disco - R (cm)	7,47	±	0,03		
Espessura do Disco - ε (cm)	1,210	±	0,050		
Densidade do Disco - ρ (g/cm3)	7,850	±	0,010		

Tabela 2 -	Medidas d	o tempo	o de	aueda	tн	para diferente	es alturas	Н

Distâ	ância entre H (cm)		sores	t ₁ (s)	<i>t</i> ₂ (s)	<i>t</i> ₃ (s)	<i>t</i> ₄ (s)	<i>t</i> ₅ (s)
S0-S1	15,00	±	0,30	2,527	2,488	2,660	2,488	2,494
S0-S2	30,00	±	0,30	3,691	3,664	3,830	3,676	3,651
S0-S3	45,00	±	0,30	4,599	4,564	4,733	4,558	4,545
S0-S4	60,00	±	0,30	5,351	5,319	5,492	5,326	5,307

Há algum erro nos dados das tabelas? Justifique!

$$t_H^2 = (t^2 \pm \Delta t^2) = t^2 \pm t^2 \left| \frac{2\Delta t}{t} \right|$$

Tabela 3 – Medidas do tempo de queda t_H para diferentes H e t_H^2

Н	t	t^2
(m)	(s)	(s^2)
$0,150 \pm 0,003$	$2,53 \pm 0,05$	$6,4 \pm 0,3$
$0,300 \pm 0,003$	$3,70 \pm 0,05$	$13,7 \pm 0,4$
$0,450 \pm 0,003$	$4,60 \pm 0,05$	$21,2 \pm 0,5$
$0,600 \pm 0,003$	$5,36 \pm 0,05$	$28,7 \pm 0,6$

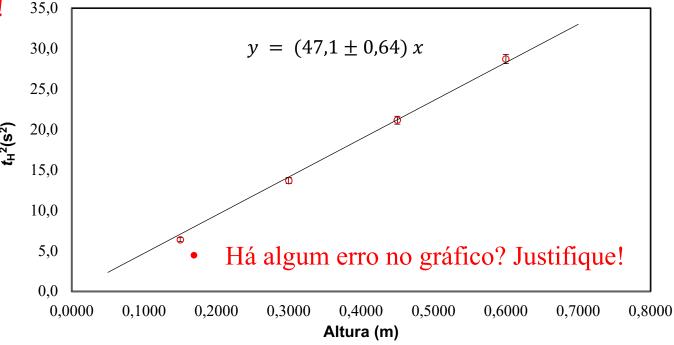


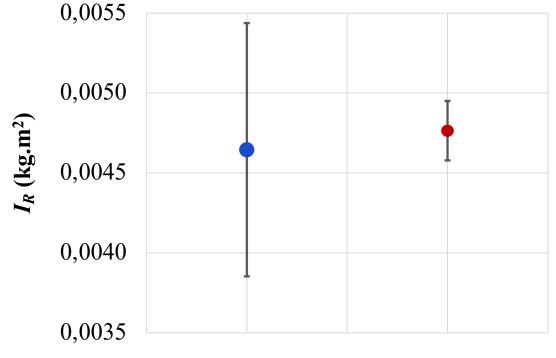
Figura 1 - Gráfico $t_{\rm H}{}^2$ X H para determinação do Momento de Inércia do Disco

23/08/2022 13:55 Física Experimental 10

Experimento A7 – Momento de Inércia

$$t^2 = \frac{2I_R + 2mr^2}{mgr^2}H$$

$$y = \alpha x = (47,1 \pm 0,6)x$$


$$f = I_R = \frac{mr^2(\alpha g - 2)}{2}$$

$$\pm \Delta f = \pm \frac{mr^2(\alpha g - 2)}{2} \left[\left| \frac{\Delta m}{m} \right| + \left| 2 \frac{\Delta r}{r} \right| + \left| \frac{\Delta \alpha}{\alpha} \right| + \left| \frac{\Delta g}{g} \right| \right]$$

$$I_{R-teo} = \frac{1}{2}MR^2$$

$$I_R (\text{kg.m}^2) = 0.0046 \pm 0.0008$$

$$I_R (\text{kg.m}^2) = 0.0048 \pm 0.0002$$

Experimento A3 – Segunda Lei De Newton

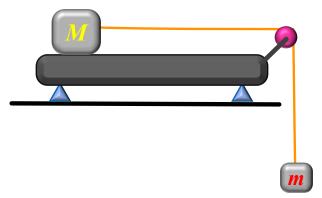


Figura 1 – Esquema de montagem do experimento

Tabela 1 – dados iniciais das massas e distância entre sensores de medidas de tempo

$m^{1}(g)$	16,94	±	0,01	
$M^{2a}\left(\mathrm{g}\right)$	248,26	±	0,01	
$M^{2b}\left(\mathbf{g}\right)$	345,34	±	0,01	
Separação entre sensores (cm)	15,0	±	0,3	

Tabela 2 - medidas dos tempos de passagens entre sensores para a massa M_{2a}

N	t ₁ (s)	t ₂ (s)	<i>t</i> ₃ (s)	<i>t</i> ₄ (s)
1	0,72075	1,04825	1,29815	1,50810
2	0,79370	1,12330	1,37320	1,58265
3	0,74510	1,07075	1,31900	1,52720
4	0,74345	1,06950	1,31740	1,52535
5	0,77745	1,10760	1,35760	1,56710
6	0,73410	1,06070	1,30920	1,51740
7	0,76435	1,09350	1,34375	1,55325
8	0,78460	1,11470	1,36495	1,57420
9	0,74885	1,07520	1,32415	1,53260
10	0,81035	1,13915	1,38845	1,59680

Tabela 4 – medidas da distância entre sensores, do tempo de passagem médio e do tempo de passagem médio ao quadrado para M_{2a}

S	$ar{t}$	$ar{t}^2$		
(m)	(s)	(s^2)		
$0,150 \pm 0,003$	$0,76 \pm 0.02$	$0,58 \pm 0,04$		
$0,300 \pm 0,003$	$1,09 \pm 0,03$	$1,19 \pm 0,06$		
$0,450 \pm 0,003$	$1,34 \pm 0.03$	$1,79 \pm 0,07$		
$0,600 \pm 0,003$	$1,55 \pm 0,03$	$2,40 \pm 0,08$		

Tabela 3 - medidas dos tempos de passagens entre sensores para a massa M_{2b}

N	<i>t</i> ₁ (s)	t ₂ (s)	<i>t</i> ₃ (s)	t ₄ (s)
1	0,90210	1,29235	1,58820	1,83525
2	0,89245	1,27990	1,57420	1,82025
3	0,87360	1,25925	1,55275	1,79835
4	0,87820	1,26180	1,55415	1,79945
5	0,88190	1,26445	1,55625	1,80130
6	0,87760	1,26135	1,55355	1,79865
7	0,86605	1,24990	1,54195	1,78715
8	0,88735	1,27145	1,56325	1,80825
9	0,88510	1,26935	1,56120	1,80615
10	0,88555	1,27065	1,56290	1,80790

Tabela 5 – medidas da distância entre sensores, do tempo de passagem médio e do tempo de passagem médio ao quadrado para M_{2b}

S	ī	\bar{t}^2
(m)	(s)	(s^2)
$0,150 \pm 0,003$	$0,883 \pm 0,008$	$0,78 \pm 0,01$
$0,300 \pm 0,003$	$1,268 \pm 0,009$	$1,61 \pm 0,02$
$0,450 \pm 0,003$	$1,561 \pm 0,009$	$2,44 \pm 0,03$
$0,600 \pm 0,003$	$1,806 \pm 0,009$	$3,26 \pm 0,03$

Experimento A3 – Segunda Lei De Newton

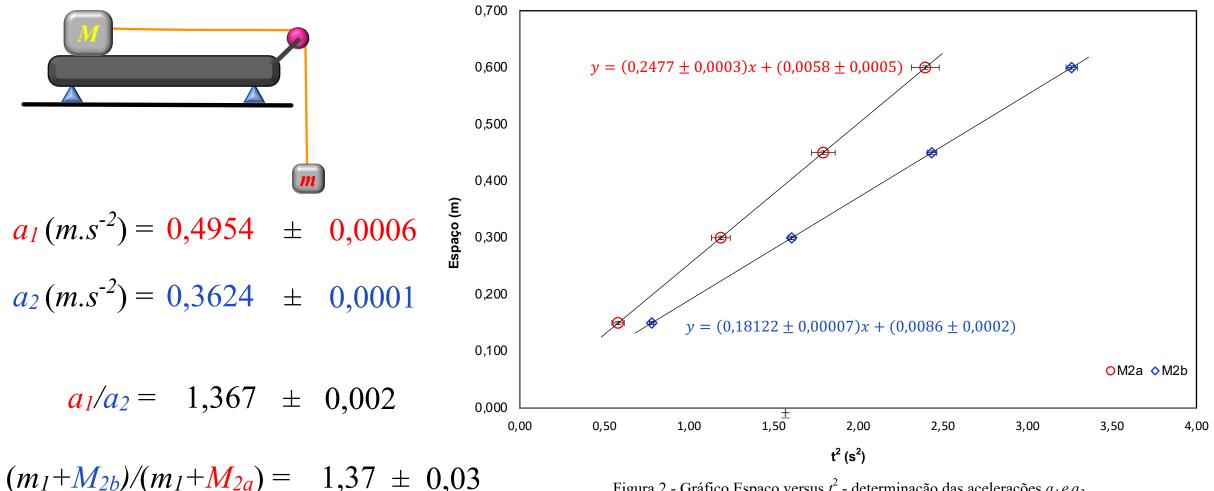


Figura 2 - Gráfico Espaço versus t^2 - determinação das acelerações $a_1 e a_2$

Obrigado!